Summary of lesson plan of college faculty

Semester: ODD

Class: B.Sc. 1st Year

Subject: Chemistry

For the Month of: August to December, 2023

Name of Assistant Professor: Mrs. Jyoti

Sr. No.	Month	Topic to be Covered	Academic Activities
			/Assignments/Test
1.	August	Definition of transistion elements, position in periodic table, general charactristics & properties of 3D element with 4D & 5D elements with retrence to only ionic radii, oxidation state, Magnetic & spectral properties & steriochemistry stability of various oxidisation state. And structure and properties of some compounds of transistion elements: Tio2, VoCl2, Fecl3, CuCl2, Ni(Co)4 Cordination compound: werner cordination theory of coordination compound effective atomic No., chelates, Nomenclature of coordinations, isomerism coordination compounds. Valence bond theory of transistion metal complexes.	Test of coordination compound
2.	September	Non aqoues solvent: Physical properties of solvents, types of solvents and their general characteristics rxn in non- aqueous solvent with reference to liquid NH3 and liquid SO2. Alcohols: Monohydric alcohol - nomenclature, Methods of formation by reduction of aldehyde, Ketones, carboxylic acids and esters. Hydrogen bonding. Acidic Nature Reactions of Alcohols. Dihydric Alcohols- Nomenclature, methods of formation, chemical rxn, oxidative cleavage and Pinacol-Pinacolone rearrangement Phenol: Nomenclature, structure and bonding, preparation of phenols, Physical properties and acidic character. Comparative acitic strength of alcohol and phenols, resonance.	Assignment of Phenol

3.	October	Stabilisation of phenoxide ion. Rxn of Phenols - electrophillic aromatic substitution, mechnism al Fries rearraangement, claisen rearrangement, Reimertiemann rxn Kolbe's reaction and schotten and Bavmann rxn Epoxides: synthesis of epoxides, Acid and Base catalysed ring opening of epoxides orientation of epoxide ring opening rxn of Grignard and organolithium reagents with epoxide UV (Ultravoilet) absorption soectroscopy: Absorption Laws (Beer-lambert law), Molar absorptivity, presentation and analysis of UV spectra, types of electronic transistion, effect of conjugation, concept of chromophore and auxochrome. Bathochromic, Hypsochromic, Hyperchromic & Hypochromic Shifts	One-day workshop on the topic "ISRO contribution to space, science and exploration
4.	November	Application of UV spectra in structure eluciation of simple organic compounds. Carboxylic acids and acid derivatives: nomenclature of carboxylic acids, structure and bonding, physical properties, acidity of carboxylic acids, effects of substitutents on acid, strength, preparation of carboxylic acids, rxn of carboxylic acids. Hell- volhard- zelinsky rxn. Reduction of carboxylic acids. Mechanism of decarboxylation. Relative stability of acyl derivatives, physical properties, inter-conversion of acid derivatives, by nucteophilic acyl substitution. Mechanism of estrification and hydrolysis (acidic and basic)	Assignment on topic carboxylic acid.
5.	December	Thermodynamics: system, surrounding etc. Types of systems, intensive and extensive properties. State and part function and the differential thermo process, first law of thermodynamics, heat capacity Joule Thomson coefficient, chemical equation, free, energy, concept of chemical potential clausivs- clapyron equation and its applications. Distribution law: Nernest distribution law, (i) determination degree of distribution (ii) determination of equation, constant (iii) process of extraction Revision of physical chemistry	

Summary of lesson plan of college faculty

Semester: ODD

Class: B.Sc. 1st Year

Subject: Chemistry (Minor)

For the Month of: August to December, 2023

Name of Assistant Professor: Mrs. Jyoti

Sr. No.	Month	Topic to be Covered	Academic Activities /Assignments/Test
1.	August	Covalent leond: Valence leond theory approach, shapes of simple inorganic molecules and ions leased on valence shell electron pair repulsion (VSPER) theory and hybridization with suitable example of linear, trigonal planner, square planner, tetrahedra, trigonal bipyramidal and octahedral arrangement. Molecular orbital theory of Homonuclear (N2, O2) and heteronuclear (Co and No) diatomic molecules, dipole moment and Percentage ionic character in covalent bond	Test of covalent bond Assignment of covalent bond
2.	September	Chemical kinetics - concept of reaction rates, rate, equation, factor influencing the rate of reaction, order and molecularity of reaction Integrated rate expression 40, so first, second order reaction (for equal concentrations), half-life period of a reaction.	Test of chemical kinetics

3.	October	Alkanes (up to 5 carbon atoms) Alkanes, nomenclatures, classification of carbon atoms in Alkanes, Isomerism in alkanes, sources method of formation: - Wurtz reaction, Kolbe reaction, Corey House reaction and decarboxylation of carboxylic acids, physical properties, mechanism of free radical halogenation of alkanes: reactive selective	One-day workshop on the topic "ISRO contribution to space, science and exploration Assignment of alkanes
4.	November	Metallic leond and semiconductors : metallic leond- quantitative idea of Valence leond and band theories of metallic Leond. Conductor, semiconductor, insulator semiconductor: introduction, types of semiconductors, and application of semiconductor	Test of metallic bond and semiconductor
5.	December	Revision of chapter Alkanes and metallic leond and semiconductor	

Summary of lesson plan of college faculty

Semester: ODD

Class: B.Sc. 3rd Year

Subject: Chemistry (Theory)

For the Month of: August to December, 2023

Name of Assistant Professor: Ms. Jyoti

Sr. No.	Month	Topic to be Covered	Academic Activities
			/Assignments/Test
1.	August	Metal-Ligand Bonding in Transition Metal complexes: limitations valence bond theory, an elementary idea of crystal field theory. Thermodynamics and kinetic aspects of metal complexes: outline of thermodynamics stability of metal complexes Factor affecting the stability Troin- William series, substitution reaction of square planner complex. Magnetic properties of transition, metal complexes: types of magnetic material, magnetic, suspectibility. Method of determining, magnetic, suspect ability, spin only for formula L-S coupling, relation of us & ueff	Test of chapter 1 Metal- ligand bonding in transition- metal complexes
2.	September	Electronic spectra of transition metal complexes: selection rules for d-d transition, orgel energy level diagram for d1 and d9 states. Organic Chemistry: NMR spectrascopy, Principle of nuclear magnetic resonance, the PMR spectrum, number of signals, peak areas. Discussion of PMR spectra of molecules, simple problem on PMR spectroscopy for structure determination. Carbohydrates: Classification and nomenclature, Mechanism of osazone formation. Interconversion of glucose & fructose. Chain lengthening and chain shortening of aldoses.	Assignment of NMR spectroscopy

3.	October	Determination of ring sizes of glucose and fructose. Open chain and cyclic structure of D(+) - glucose & D(-) fructose. Mechanism of mutarstation. structures of ribose and deoxyribose. Organometallic compounds: Organomagnesim compounds: The Grignard reagents. Organozine compounds: formation and chemical reactions. Organolithium compounds: formation and chemical reactions.	One day workshop on the topic "ISRO contribution to space, science and exploration
4.	November	Quantum Mechanies - I. Black-body radiation, Hamiltonian operator, Hermitian operator, Quantum mechanical operators, Planck's radiation law. Physical properties and Molecular structure: optical activity, polarisation, induced dipole moment. Magnetic, permeability, magnetic, susceptibility. Spectroscopy: Electiomagnetic radiation, regions of spectrum, Rotational spectrum: Selection rules, Energy levels of rigid rotator. Vibrational spectrum: selection rules, Energy levels of simple harmonic oscillator idea of vibration frequency. Raman spectrum: Concept of polarizibility, pure rotational and pure vibrational Raman spectra of diatomic molecules.	Assignment on quantum mechanics
5.	December	Revision of NMR spectroscopy. Revision of quantum mechanics -I, physical properties and molecular structure	